哈喽 小伙伴们 ,今天给大家科普一个小知识。在日常生活中我们或多或少的都会接触到二项式定理知识点总结_高中数学二项式定理知识点总结方面的一些说法,有的小伙伴还不是很了解,今天就给大家详细的介绍一下关于二项式定理知识点总结_高中数学二项式定理知识点总结的相关内容。
【资料图】
很多小伙伴留言想了解关于二项式定理知识点总结的一些详细内容,下面是(扬升科技www.esengof.com)小编整理的与二项式定理知识点总结相关的信息分享给大家,希望对大家有所帮助呢。
本人亲身试验
如果LZ你是新高一,那就好办。
1.其实我觉得最重要的就是自信。不管你初中怎样,高中的数学是不一样的,初中很死很呆。如果只是按照初中的方法,学不好高中数学,至少不会拔尖。所以,给自己信心!这样才有动力啊。
2.有自信,那就拿出行动。在高一时,最好自学完大部分课程,不用钻得很深,把参考书的知识提纲看看,大致掌握。然后,看教科书(现在高考题蛮多技巧都是课本上的,比如放缩法的一个公式),把书上的练习做一做,做简单的,不需要很深。
3.在自学的同时,最最重要的是老师讲的课程,讲到哪里,你就要钻研到哪里。若是条件可以的话,可以跟个辅导班,我之前就是这么过来的,分享一家口碑不错的
,仅供参考。伴随着老师的步伐,在已经自学的基础上,开始做一些高考题,有些题一开始或许有些难度,或许有些知识点的技巧老师没讲到,但是,你要钻研,探寻知识的本质是什么。
4.笔记本,这个当初我没注意到,很是后悔。笔记本记什么,记你自己的技巧与老师的技巧(最好配上题),记错题(不要错一题写一题,把错误分类,每一类后写明自己错的原因)
5.如上所做,在高二,上课会很轻松,你只要学习技巧与思维,这时开始,一题多解的训练,一道题,尽可能想多一点方法,还可以与同学交流。
6.在高一,一开始学集合可能会很晕,这很正常,初中与高中的衔接是这样的,你一定要给自己信心,努力钻研,这个过渡期就很快度过的。
7.下面给出我自己曾经遇到的问题。
a.立体几何(血的教训,记住啊),一开始学的是“综合法”(是什么你先不用管),很简单,
是简单的立体几何,在高二时,又会学到“坐标法”(这个基本是万能方法),坐标法,是万金油,但是,你要记住,千万不要用泛滥了。我在学习坐标法后,立体几何题都用坐标法,不用思考,提笔就算。最后,我发现我不会用综合法了......现在高考趋势于综合法,坐标法对付几年前高考题,很快。但是,坐标法最近不好用啊,甚至用不了。综合法,是思维,坐标法,是计算。
两者过关,万无一失。所以,建议你两种方法都练,但综合法为主,坐标法为辅。
b.圆锥曲线,通常是高考最后3题,较难,刚学不建议马上做高考题,基础一点要牢(一定,一定,切记切记).
c.导数,通常较难,也是基础要牢,导数题,通常比较活,题海战术似乎没什么用(不要深陷其中),要掌握思维与技巧,才可能学好导数。
总结来说:自信(任何时候都要对自己说:我可以的),基础(一切之源,要牢),钻研(我曾经为了寻找一个规律,弄到凌晨3点),归纳(就是你的笔记本)
做到上面这几点,坚持3年,高考至少135,若是加一点竞赛思想,保140没问题.
《高中数学基础知识梳理(数学小飞侠)》网盘免费下载
提取码:i8i2
01.集合例题讲解.mp4
01.集合进阶.mp4
02函数的值域.mp4
03函数的定义域与解析式.mp4
04函数的单调性.mp4
04函数的奇偶性.mp4
05指数运算与指数函数.mp4
07对数运算与对数函数.mp4
08幂函数突破.mp4
09函数零点专题.mp4
10含参二次函数与不等式专题.mp4
11二次函数根的分布专题.mp4
12空间几何体.mp4
13点线面位置关系进阶.mp4
14平行关系突破.mp4
15垂直关系突破.mp4
16空间几何关系综合.mp4
17直线方程突破.mp4
18圆的方程突破.mp4
19算法初步.mp4
20算法语句与算法案例.mp4
21数据的收集与频率分布.mp4
22常用统计量与相关关系.mp4
23古典概型概率.mp4
24几何概型概率.mp4
25任意角重难点.mp4
26三角函数定义与诱导公式.mp4
27三角函数图像及性质.mp4
28平面向量几何运算.mp4
29平面向量代数运算.mp4
30.三角恒等变换.mp4
31.三角函数计算专题.mp4
32.正弦定理与余弦定理.mp4
33.等差数列突破.mp4
34.等比数列突破.mp4
35.数列通项公式专题.mp4
36.数列求和公式专题.mp4
37.二次不等式与分式不等式.mp4
38.线性规划问题.mp4
39.基本不等式突破.mp4
40.逻辑用语专题.mp4
41.椭圆方程及其几何性质.mp4
42.双曲线方程及其性质.mp4
43.抛物线方程及其性质.mp4
44.直线与圆锥曲线综合.mp4
45.空间向量突破.mp4
46.导数的计算专题.mp4
47.导数的应用.mp4
48.导数的应用(二).mp4
49.定积分与微积分.mp4
50.复数专题.mp4
51.排列组合.mp4
52.二项式定理.mp4
53.随机变量及其变量.mp4
54回归分析与独立性检验.mp4
01.集合例题讲解.mp4
01.集合进阶.mp4
02函数的值域.mp4
03函数的定义域与解析式.mp4
04函数的单调性.mp4
04函数的奇偶性.mp4
05指数运算与指数函数.mp4
07对数运算与对数函数.mp4
08幂函数突破.mp4
09函数零点专题.mp4
10含参二次函数与不等式专题.mp4
11二次函数根的分布专题.mp4
12空间几何体.mp4
13点线面位置关系进阶.mp4
14平行关系突破.mp4
15垂直关系突破.mp4
16空间几何关系综合.mp4
17直线方程突破.mp4
18圆的方程突破.mp4
19算法初步.mp4
20算法语句与算法案例.mp4
21数据的收集与频率分布.mp4
22常用统计量与相关关系.mp4
23古典概型概率.mp4
24几何概型概率.mp4
25任意角重难点.mp4
26三角函数定义与诱导公式.mp4
27三角函数图像及性质.mp4
28平面向量几何运算.mp4
29平面向量代数运算.mp4
30.三角恒等变换.mp4
31.三角函数计算专题.mp4
32.正弦定理与余弦定理.mp4
33.等差数列突破.mp4
34.等比数列突破.mp4
35.数列通项公式专题.mp4
36.数列求和公式专题.mp4
37.二次不等式与分式不等式.mp4
38.线性规划问题.mp4
39.基本不等式突破.mp4
40.逻辑用语专题.mp4
41.椭圆方程及其几何性质.mp4
42.双曲线方程及其性质.mp4
43.抛物线方程及其性质.mp4
44.直线与圆锥曲线综合.mp4
45.空间向量突破.mp4
46.导数的计算专题.mp4
47.导数的应用.mp4
48.导数的应用(二).mp4
49.定积分与微积分.mp4
50.复数专题.mp4
51.排列组合.mp4
52.二项式定理.mp4
53.随机变量及其变量.mp4
54回归分析与独立性检验.mp4
简单的话有时候说不清。二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664、1665年间提出。此定理指出:其中,二项式系数指...等号右边的多项式叫做二项展开式。二项展开式的通项公式为:...其i项系数可表示为:...,即n取i的组合数目。因此系数亦可表示为帕斯卡三角形(Pascal"s Triangle)二项式定理(Binomial Theorem)是指(a+b)n在n为正整数时的展开式。(a+b)n的系数表为: 1 n=01 1 n=11 2 1 n=21 3 3 1 n=31 4 6 4 1 n=41 5 10 10 5 1 n=51 6 15 20 15 6 1 n=6(左右两端为1,其他数字等于正上方的两个数字之和)在我国被称为「贾宪三角」或「杨辉三角」,一般认为是北宋数学家贾宪所首创。它记载于杨辉的《详解九章算法》(1261)之中。在阿拉伯数学家卡西的著作《算术之钥》(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同。在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图。但一般却称之为「帕斯卡三角形」,因为帕斯卡在1654年也发现了这个结果。无论如何,二项式定理的发现,在我国比在欧洲至少要早300年。 1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了的展开式。 二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。1.熟练掌握二项式定理和通项公式,掌握杨辉三角的结构规律二项式定理:叫二项式系数(0≤r≤n).通项用Tr+1表示,为展开式的第r+1项,且, 注意项的系数和二项式系数的区别. 2.掌握二项式系数的两条性质和几个常用的组合恒等式. ①对称性: ②增减性和最大值:先增后减n为偶数时,中间一项的二项式系数最大,为:Tn/2+1n为奇数时,中间两项的二项式系数相等且最大,为:T(n+1)/2+13.二项式从左到右使用为展开;从右到左使用为化简,从而可用来求和或证明.掌握“赋值法”这种利用恒等式解决问题的思想. 证明:n个(a+b)相乘,是从(a+b)中取一个字母a或b的积。所以(a+b)^n的展开式中每一项都是)a^k*b^(n-k)的形式。对于每一个a^k*b^(n-k),是由k个(a+b)选了a,(a的系数为n个中取k个的组合数(就是那个C右上角一个数,右下角一个数))。(n-k)个(a+b)选了b得到的(b的系数同理)。由此得到二项式定理。 二项式系数之和:2的n次方而且展开式中奇数项二项式系数之和等于偶数项二项式系数之和等于2的(n-1)次方
二项式定理
binomial theorem
二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664、1665年间提出。
此定理指出:
其中,二项式系数指...
等号右边的多项式叫做二项展开式。
二项展开式的通项公式为:...
其i项系数可表示为:...,即n取i的组合数目。
因此系数亦可表示为帕斯卡三角形(Pascal"s Triangle)
二项式定理(Binomial Theorem)是指(a+b)n在n为正整数时的展开式。(a+b)n的系数表为:
1 n=0
1 1 n=1
1 2 1 n=2
1 3 3 1 n=3
1 4 6 4 1 n=4
1 5 10 10 5 1 n=5
1 6 15 20 15 6 1 n=6
参考:?wtp=tt
PS:你自己慢慢去看吧,在这里,我就不多摘抄了。
Copyright 2015-2022 每日知识产权网 版权所有 备案号:浙ICP备2022016517号-15 联系邮箱:5 146 761 13 @qq.com